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Abstract—Changes in software are unavoidable due to multiple 
reasons such as change in user requirements, change in technology, 
increasing customer demands etc. Introduction of such changes may 
adversely affect the quality of the software. Thus, a streamlined 
approach is required to identify the classes which are more change 
prone than others during early stages of software development life 
cycle. Identification of change prone classes allows managers to pay 
focused attention on such classes and thus, minimizes the effort 
required at the maintenance phase. This will inturn lead to efficient 
utilization of resources in terms of time, money and manpower. In 
this study, we have constructed various machine learning and 
statistical models for predicting change prone classes in the early 
phases of software development life cycle. The machine learning 
techniques used are primarily ensemble learners which will allow us 
to explore their use in the field of change prediction. For the purpose 
of empirical validation, three open source software systems, Apache 
projects (Abdera, Poi and Rave) are used. The results show a 
comparative performance of machine learning techniques and 
statistical models. Among the machine learning models, random 
forest and logitboost models have outperformed all the other models 
for all the Apache projects. Thus, this consistent result shows that the 
researchers and practitioners may use these models for prediction of 
change prone classes of similar Apache software. 

1. INTRODUCTION 

Change is inevitable at all the stages of a software project [1]. 
With the increasing complexity of the software evolution, 
prediction of software changes is also becoming complex. 
Implementing changes at a later stage degrades the quality of a 
system and reduces its maintainability but is necessary for the 
real world environment [2-3]. Thus, among number of quality 
attributes, we are focusing on the attribute ‘change proneness’ 
in this paper. Prediction of the change prone classes if done in 
an initial stage allows the managers, developers, testers and 
designers to pay focused attention on such classes leading to 
saving of lots of resources [4-5]. This will inturn improve the 
quality of a software project. Thus, software change prediction 
is an essential activity for the software quality to be high [6]. 

Object oriented methodologies are increasingly being adopted 
to evaluate the quality of software [7]. Thus, we have used 
various object oriented metrics for constructing machine 
learning and statistical models which can be used for 

predicting change prone classes. The machine learning 
techniques used are primarily ensemble learners (EL); 
Bagging, LogitBoost, Adaboot and Random Forest. Despite 
the various advantages of ensemble learners such as their 
generalization ability, higher prediction accuracy etc., they are 
not being explored in the field of change prediction. Thus, in 
this paper, we aim to construct prediction models using these 
ensemble learners. Besides this, we have also compared the 
performance of these ensemble learner models with the 
traditional statistical model, logistic regression. 

In this paper, we aim to address the following two research 
questions: 

RQ1: Among multiple EL discussed, which ensemble learner 
is superior over all others and can be used for predicting 
change prone classes? 

RQ2: How does the performance of EL compare with the 
statistical technique? 

For the purpose of empirical validation, we have used 3 open 
source Apache projects, (Abdera, Rave and Poi). The 
performance of the models is evaluated using different 
performance measures and validation technique used 10-cross 
validation. We obtained consistent results across all the 
projects. For all the projects, Random Forest and Logitboost 
have shown superior performance than other classifiers. Thus, 
we recommend the use of these classifiers for prediction of 
change prone classes of similar Apache projects. 

This paper is structured as follows: Section 2 summarizes the 
research background. Section 3 explains the research 
methodology. Section 4 shows the results. The last section 
concludes the paper. 

2. RESOURCE BACKGROUND 

In this section, we will focus on the datasets used, their change 
collection process and the variables used. 

2.1 Empirical Data Collection 

In this section, we have explained the datasets used in our 
study. Three open source Apache projects are used, namely 
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Abdera, Poi and Rave. All these projects are written in Java 
programming language. Apache Abdera is a Java 
implementation of the atom syndication and atom publishing 
protocol (https://abdera.apache.org/). Apache Poi provides 
pure Java libraries for Microsoft office formals 
(https://poi.apache.org/) and Apache Rave aggregates and 
serves web widgets(https://rave.apache.org/). Open source 
software is publically accessible, changed and shared. Source 
code of these software systems is available online. We have 
compared two successive versions of each of these software to 
identify those classes in the previous version which have 
changed in the next version. The versions used for each of the 
software are listed in table 1. 

We briefly explain the change collection process in this 
section. 

Change Collection Process 

The classes with the same name in the two successive versions 
are extracted and compared. The change is calculated as the 
number of lines of code added, deleted and modified in the 
class of present version with respect to the same class in the 
previous version.  

The ‘TOTAL CHANGE’ for a class as follows: 
• Each added or deleted line is counted as one SLOC 

change. 
• Each modified line is counted as two SLOC change 

i.e. one deletion followed by one addition. 
We defined a binary variable ‘CHANGE’, which is assigned a 
value 1 if ‘TOTAL CHANGE’ >1 or 0 otherwise.  
The number of common classes between the two successive 
versions and the classes changed in provided in table 1.  

Table 1: Software Details. 

Software Total 
Number of 

Classes 

Classes 
Changed 

Versions 
Previous 
Version 

Current 
Version 

Abdera 685 635 1.1.2 1.1.3 
Poi 2786 2706 3.9 3.10 

Rave 685 225 0.22 0.23 

2.2 Variables Used 

In this section, we explain the independent and dependent 
variables used in this study. 

 The independent variables used are various object oriented 
metrics. We have used the popular Chidamber and Kemerer 
[2] metrics along with the metric used to measure the size of 
the software (LOC). 

Table 2: Definition of Independent Variables. 

METRIC DESCRIPTION 
DIT Depth of 

Inheritance Tree 
The maximum number of edges 
between a given class and a root 
class. 

RFC Response for a 
Class 

Aggregate of local methods of a 
class and all the external methods 
directly called by any local method. 

CBO Coupling between 
Objects 

The number of external classes 
whose attributes and methods are 
used from the measured class. 

LOC Lines of Code The lines of code the class contains. 
WMC Weighted Methods 

Per Class 
Count of sum of complexities of all 
methods in a class. 

LCOM Lack of Cohesion For each data field in a class, the 
percentage of the methods in the 
class using that data field. The 
average of percentages is subtracted 
from 100%. 

 
Change proneness is the dependent variable in our study. If a 
class in changed in the next version of the software, it is called 
as change prone and not-change prone otherwise. Class 
changes are induced either by class itself or due to changes in 
other classes. Internal changes can be identified from the 
source code and are calculated interms of number of lines 
added, deleted and modified in the present version with 
respect to the previous version. We are dealing with internal 
changes in this study. 

3. RESOURCE METHODOLOGY  

In this section, we explain the various data analysis methods 
and the performance measures used to evaluate the models. 

3.1 Data Analysis Method Used 

In this section, we explain the various data analysis methods 
used and the performance measures used to evaluate the 
models.Models for predicting change proneness of object 
oriented software can be categorized under two categories, 
namely – statistical and machine learning models. 

3.1.1 Statistical Model: Logistic Regression (LR) 

Logistic Regression is applied on independent variable set to 
predict dependent variable ([8-9]). It is applied when 
dependent variable is likely to have two observed outcome. 

3.1.2 Machine Learning Model 

Brief description of various Machine Learning techniques is 
given in this section. WEKA tool, open source data analysis 
software developed by the University of Waikato [10] has 
been used with its default setting. 

Random Forest 

Random Forest is a method for classification and regression, 
proposed by Brieman [11]. It is a combination of trees 
predictors such that each tree depends on the value of a 
random vector. Thus, a Random Forest is a classifier 
containing many decision trees. The forest chooses the 
classification having the most votes, i.e. the majority wins. 
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Linear models can also be used as the base estimator in 
random forest instead of decision trees [12]. 

Bagging 

Bagging (also known as Bootstrap aggregation) is one of the 
machine learning ensemble meta-algorithms proposed by 
Breiman in 1994 [13]. It is designed to improve the stability 
and accuracy of the classification models by creating various 
versions of the training sets. Various homogenous/comparable 
training sets are framed and a newly formed function is trained 
for each of them. Result of class prediction is based on model 
average approach [14]. Bagging helps in reducing variance 
and avoids over fitting. 

Boosting 

Boosting is a machine learning algorithm which is used for 
reducing variance in supervised learning. It is a method for 
improving correctness of a given learning algorithm by 
incorporating simple rules to form an ensemble such that 
performance of single member is boosted. Logitboost, 
Adaboost are some of the various boosting algorithm 
available. The basic difference between various boosting 
algorithms is their hypothesis and significance of training data 
points. Adaboost introduced in 1995 by Freud and Schapire 
[15] is the most accepted algorithm among all boosting 
algorithms. Weak learning algorithm is called in a series of 
rounds, n=1……,N. At the beginning all the weights are set 
equal and on each round, weights of incorrect classified 
example are increased whereas weights of correct classified 
examples are decreased such that focus is on hard examples 
[15]. 

Correlation based features selection (CFS) 

Feature selection is a basic principle of machine learning 
techniques. In this method relevant features are preferred for 
model construction. Features are characterized as relevant if 
the correlation between independent variables and dependent 
variables exist but they should not have any resemblance 
among each other. Removal of redundant features does not 
lead to data loss [16]. We have applied CFS which is provided 
in WEKA tool [10] for data reduction. Independent variables 
which are necessary for the data are selected [16-17]. 
Advantages of feature selection are less execution time, more 
understandability, accurate, better prediction accuracy [17]. 

3.2 Performance Measures Used 

Let a = number of classes correctly predicted to be change 
prone (true positive). 

b = number of classes incorrectly predicted to be non- change 
prone (false negative). 

c = number of classes incorrectly predicted to be change prone 
(false positive). 

d = number of classes correctly predicted to be non- change 
prone (true negative). 

Different performance measures can be defined as follows: 

Sensitivity 

Sensitivity is the ratio of correctly predicted change prone 
classes by total change prone classes. 

Mathematically, sensitivity = a / (a + b) 

Specificity 

Specificity is the ratio of correctly predicted non change prone 
classes by total non-change prone classes.  

Mathematically, specificity = d / (c + d) 

Accuracy/Precision 
 Accuracy is defined as the ratio of number of classes 
(including both change and not change prone) that are 
predicted correctly by the total number of classes. 

Mathematically, accuracy= a+d / (a+ b + c+ d) 

Receiver operating characteristics curve 
In a receiver operating characteristic curve (ROC), the true 
positive rate i.e. sensitivity is plotted on y-axis the false rate 
i.e. (1-specificity) is plotted on x-axis. Different cut-off points 
between 0 and 1 are taken, then sensitivity and specificity 
values at each cut off point are calculated and ROC curve is 
constructed with the help of these values. Among a number of 
cut-off points, the cut-off point where sensitivity equals 
specificity is known as optimal cut-off point. Thus, the 
sensitivity and specificity values obtained at the optimal cut-
off point are considered for model evaluation. Besides this, the 
area under the ROC curve (AUC) is also used to measure the 
performance of the models. Higher the values of sensitivity, 
specificity and AUC, better the performance of the model.  

Cross validation 

The results are highly optimistic if the model is tested on the 
same dataset as on which it is trained. Thus, it is very 
important to use different training and testing sets. For this 
purpose, we have used K-cross validation (the value of K is 
10), where the dataset is divided into 10 equal parts. 9 parts 
are used for training the data and the remaining 1 part is used 
for testing the data. This process is repeated until each of the 
10 parts is used as testing sets. 

4. RESULT ANALYSIS 

Various models using different ensemble learning techniques 
are constructed for prediction of change prone classes. Before 
model construction, CFS technique is applied to obtain a 
subset of metrics (independent variables) which are significant 
predictors of change proneness. Table 3 lists the significant 
metrics of each of the three datasets, obtained after applying 
CFS. 
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Table 3: Datasets Used. 
Datasets Used Significant Metrics 
Apache Abdera WMC, DIT, LOC 

Apache Poi WMC, RFC, LOC 
Apache Rave WMC, RFC, LOC 

 
We now discuss the results of validation presented in tables 4, 
5 and 6 of Abdera, Poi and Rave respectively.  

Table 4 shows that for Abdera dataset, the highest AUC, 
sensitivity and specificity are given by Random Forest model. 
The second best performance is given by LogitBoost with 
AUC 0.7, sensitivity and specificity of 0.65 and 0.68 
respectively. 

Table 4: Validation Results of Apache Abdera. 

Method Used Sensitivity Specificity AUC 
Logistic Regression 0.67 0.70 0.62 

LogitBoost 0.65 0.70 0.70 
AdaBoost 0.61 0.60 0.65 
Bagging 0.70 0.65 0.66 

Random Forest 0.71 0.72 0.71 
 
In Apache Poi (table 5), LogitBoost outperformed all other 
models with the highest values of AUC, specificity and 
sensitivity. Random Forest follows LogitBoost with AUC of 
0.63 which is comparable to Bagging. But latter has quite low 
sensitivity and specificity. 

Table 5: Validation Results of Apache Poi. 

Method Used Sensitivity Specificity AUC 
Logistic Regression 0.50 0.60 0.52 

LogitBoost 0.61 0.62 0.66 
AdaBoost 0.70 0.60 0.60 
Bagging 0.60 0.60 0.63 

Random Forest 0.61 0.63 0.63 
 
In Apache Rave (table 6) Random Forest has the maximum 
AUC i.e. 0.69 with high sensitivity and specificity of 0.66 and 
0.62 respectively. The AUC results of Bagging and 
LogitBoost are comparable with values of 0.65 and 0.64 
respectively.  

We have used one traditional method i.e. logistic regression 
besides the ensemble learning techniques. We observe that the 
AUC of the logistic regression is comparable to the ensemble 
learning techniques. The former has comparable values of 
sensitivity and specificity besides AUC with the latter. 

Table 6: Validation Results of Apache Rave. 

Method Used Sensitivity Specificity AUC 
Logistic Regression 0.64 0.61 0.64 

LogitBoost 0.61 0.61 0.64 
AdaBoost 0.61 0.60 0.61 
Bagging 0.64 0.62 0.65 

Random Forest 0.66 0.62 0.69 
 

  

Fig. 1(a)   Fig. 1(b) 

  

Fig. 1(c)    Fig. 2(a) 

   

Fig. 2(b)    Fig. 2(c) 

Fig. 1: ROC curve of LogitBoost for (a)Abdera, (b)Poi, (c)Rave 
Fig. 2: ROC curve of Random Forest for  

(a)Abdera, (b)Poi, (c)Rave 

Overall, we conclude that among ensemble learners, random 
forest and LogitBoost have outperformed all other classifiers. 
Their ROC curves obtained using all the datasets are shown in 
Fig. 1 and 2. Also, the statistical model has shown comparable 
and competitive performance with the ensemble learners. 
Thus, the researchers and practitioners could use random 
forest and LogitBoost models for prediction of change prone 
classes for similar open source Apache Software Systems. 
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5. CONCLUSION AND FUTURE WORK 

This study focuses on identifying change prone classes 
during early stages of software development life cycle which 
will lead to substantial saving of resources. The relationship 
between object oriented metrics and change proneness using 
ensemble learners and statistical method is constructed using 
various models. The datasets (LogitBoost, AdaBoost, Bagging 
and Random Forest) used are three open source Apache 
software systems (Abdera, Poi and Rave). Two versions of 
each of these are analyzed to predict the change prone classes. 

CFS technique is used to obtain a significant subset of 
independent variables for predicting the change prone classes. 
For all the three datasets, we found that WMC and LOC are 
significant in predictors of change proneness. Thus, 
researchers and practitioners may use these metrics for model 
construction. Among various ensemble learning techniques 
Random Forest and LogitBoost gave the best results of AUC 
which are (0.71, 0.70), (0.63, 0.66) and (0.69, 0.64) for 
Apache Abdera, Poi and Rave respectively. Thus, we 
recommend the use of these classifiers for prediction of 
change prone classes of similar Apache projects. 

Besides this, we also concluded that the performance of the 
statisitcal method (logistic regression) is comparable to the 
performance of ensemble learners. 

We plan to replicate this study on more number of large 
datasets which will allow us to make our results more 
generalizable. We also plan to carry out cross project 
predicting where different projects are taken for testing and 
training. 
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